Programme de colles n°22 – du 24 au 28 mars 2024

Signaux et Thermodynamique

Chapitre 4 : Régimes transitoires du premier ordre (élec et thermo)

- I. Analyse expérimentale d'un régime transitoire en électrocinétique : comportement d'un condensateur
 - 1. Présentation du dipôle condensateur
 - 2. Réponse à un échelon de tension : régime transitoire
 - 3. Propriétés particulières du condensateur
 - 4. Définitions : régimes transitoire, permanent, stationnaire

II. Analyse mathématique : équation différentielle linéaire du premier ordre

- 1. Notion de régime quasi-stationnaire
- 2. Établissement de l'équation différentielle vérifiée par u_c
- 3. Méthode générale de résolution d'une équation différentielle linéaire du premier ordre
- 4. Résolution dans le cadre de la charge et de la décharge du condensateur
- 5. Notion de constante de temps

III. Aspects énergétiques

- 1. Étude énergétique du condensateur
- 2. Bilan énergétique au sein du circuit lors de la charge et lors de la décharge d'un condensateur

IV. Régimes transitoires en thermodynamique

- 1. Analogie entre grandeurs
- 2. Evolution de la température d'un système {phase condensée incompressible et indilatable} au contact d'un thermostat

Savoirs	Savoir-faire
Caractéristiques d'un condensateur (relier la tension, la charge et l'intensité). Continuité de la tension aux bornes du condensateur. Comportement d'un condensateur en régime permanent. Notion de constante de temps, définition de la constante de temps dans le cadre d'un circuit <i>RC</i> . Énergie emmagasinée par un condensateur.	Déterminer des conditions initiales. Savoir analyser le comportement d'un condensateur en régime stationnaire. Déterminer l'équation différentielle caractéristique d'un circuit <i>RC</i> Résoudre des équations différentielles linéaires du premier ordre. Tracer des graphes de type exponentiel. Déterminer la constante de temps par analyse graphique. Effectuer un bilan énergétique au cours d'un régime transitoire. Déterminer l'équation différentielle dans le cadre d'un régime transitoire en transfert thermique (ex. corrigé en classe)

Colles Page 1

Transformations chimiques : évolution temporelle d'un système chimique

Chapitre 1 : Modélisation macroscopique – cinétique expérimentale

I. Définitions en cinétique chimique

- 1. Notation algébrisée d'une équation de réaction
- 2. Vitesses volumiques de formation et de disparition d'une espèce chimique
- 3. Vitesse volumique de réaction
- 4. Temps de demi-vie et temps de demi-réaction

II. Facteurs cinétiques

- 1. Influence des concentrations : loi d'ordre
- 2. Influence de la température : loi d'Arrhénius
- 3. Autres facteurs

III. Étude mathématique des réactions d'ordre simple

- 1. Démarche générale
- 2. Réaction d'ordre 0 par rapport à tous les réactifs
- 3. Réaction d'ordre 1 par rapport à A et 0 par rapport à tous les réactifs
- 4. Réaction d'ordre 2 par rapport à A et 0 par rapport à tous les réactifs
- 5. Analyse graphique
- 6. Temps de demi-réaction

IV. Détermination expérimentale de la loi d'ordre d'une réaction (ordres partiels, ordre global, constante spécifique de vitesse)

- 1. Méthodes expérimentales de suivi cinétique
- 2. Méthodes d'analyse des données expérimentales pour déterminer la loi d'ordre
- 3. Utilisation de la dégénérescence de l'ordre
- 4. Utilisation d'un mélange stœchiométrique

Savoirs	Savoir-faire
Définitions des différentes vitesses (formation, disparition, spécifique, volumiques)	Savoir intégrer les équations différentielles afin de déterminer la loi horaire
Loi de vitesse pour une réaction avec ordre simple 0, 1 ou 2 par rapport à un seul réactif Loi d'Arrhénius	Savoir interpréter des données expérimentales : méthode intégrale, méthode des temps de ½ réactions, méthode différentielle, méthode des vitesses initiales, tous types de suivis
Facteurs d'influence cinétique Etude mathématique dans les cas simples (ordre 0, 1 ou 2 par rapport à un seul réactif)	Identifier une expérience en dégénérescence de l'ordre ou dans les conditions de mélange stœchiométrique et simplifier la loi de vitesse en conséquence.
Temps de demi-réaction pour les ordres 0, 1 et 2	Savoir tracer un nuage de points et effectuer une modélisation affine sur sa calculatrice
	Toutes méthodes et tous types de suivis

Colles Page 2

Compétences générales évaluées

approprier	Comprendre ce qui est attendu dans un énoncé
	Extraire les informations d'un énoncé
prop	Modéliser une situation concrète
ap]	Relier le problème à une situation modèle connue
Š	Estimer des valeurs numériques ou des ordres de grandeur
	Identifier les domaines de la discipline, les lois, les grandeurs physiques ou chimiques à utiliser
Analyser	Décomposer le problème posé en des problèmes plus simples afin de construire l'ensemble du raisonnement avant de commencer
	Savoir exploiter des informations sous formes diverses (valeurs numériques, graphique, tableau, spectre, etc.)
	Formuler une hypothèse, construire un modèle
	Définir le système d'étude
	Construire un raisonnement scientifique logique
	Maîtriser ses connaissances
	Réinvestir ses connaissances
Réaliser	Savoir mettre en place des équations mathématiques pour résoudre un problème physique ou chimique
	Savoir mener efficacement les calculs analytiques
	Savoir déterminer une expression littérale
	Savoir effectuer des applications numériques correctes (conversion d'unités si besoin), avec le bon nombre de chiffres significatifs
	Vérifier l'homogénéité des formules lors d'un calcul
	S'assurer que l'on a répondu à la question posée
Valider	Exercer son esprit critique sur la pertinence d'un résultat (ordre de grandeur, comparaison avec des résultats connus, précision d'une mesure), d'une hypothèse, d'un modèle
Val	Interpréter des résultats
	Valider ou invalider une hypothèse, une information, une loi
	Confronter un modèle au réel, confronter un modèle mathématique à des résultats expérimentaux (identification du graphe à tracer, régression,)
	Faire preuve d'initiative
er	Demander une aide pertinente
iiquo	S'exprimer de manière claire, concise et avec assurance
Communiquer	Utiliser le tableau de manière claire et lisible
Con	Utiliser un vocabulaire scientifique adapté et rigoureux
	Réagir face à une situation difficile (erreurs dans le raisonnement, erreurs de calcul, etc.)
	Tenir compte des aides et des commentaires du correcteur

Colles Page 3